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ABSTRACT

In the literature on Unobservable Component Models, three main statistical instruments

have been used for signal extraction: Fixed Interval Smoothing (FIS) which derives

from Kalman’s seminal work on optimal state-space filter theory in the time domain;

Wiener-Kolmogorov-Whittle Optimal Signal Extraction (OSE) theory, which is

normally set in the frequency domain and dominates the field of classical statistics; and

Regularisation , which was developed mainly by numerical analysts but is referred to as

Smoothing in the statistical literature (e.g. smoothing splines, kernel smoothers and local

regression). Although some recognition of the inter-relationship between these methods

can be discerned from the literature, no clear discussion of their equivalence has

appeared. This paper exposes clearly the inter-relationships between the three methods;

highlights important properties of the smoothing filters used in signal extraction; and

stresses the advantages of the FIS algorithms as a practical solution to the signal

extraction problem. It also emphasises the importance of the classical OSE theory as an

analytical tool for a better understanding of the problem of signal extraction.
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1. INTRODUCTION

For many years, the problem of filtering, or the extractiion of signals from noisy data,

has occupied the minds of mathematicians and statisticians from a variety of disciplines.

Indeed, three of the most notable mathematicians of the Twentieth Century - Wiener,

Kolmogorov, and Kalman - have all made central contributions to the development of

filter or ‘signal extraction’ theory. A useful concept in signal extraction is the

Unobserved Component (UC) model, where the observed variable is related to a number

of components which represent different perceived features of the data, usually

differentiated by their characteristic spectral properties. Thus a typical discrete time

series yt  is considered as the sum of a low frequency trend component, Tt ; a seasonal

component, St , often defined by a fundamental frequency and several harmonics; and an

irregular component et , usually represented by a zero mean sequence of serially

uncorrelated random variables (discrete white noise). Of course, these components are

not exclusive nor do they actually exist: they simply reside in the eye of the beholder

and represent one possible decomposition of the series into components that appear

reasonable based on a variety of factors, such as the physical nature of the series, visual

observation of its major characteristics, and its temporal and spectral properties obtained

by time-series analysis.

In this paper, we consider first one important aspect of UC modelling: namely the

identification and estimation of low frequency trend components. Before considering

trend estimation in specific terms, however, it is worthwhile reviewing some of the most

important contributions to signal extraction, most of which involve trend or low

frequency component estimation in one way or another. One of the oldest and best

known time domain techniques for signal extraction is Census X-11 and its later

extensions X-11 ARIMA and X-12 ARIMA (Shiskin et al., 1967; Dagum, 1980,1988;

Findley et al., 1992, 1996) which, for over three decades, has been the main method of

trend estimation and seasonal adjustment used by Government Agencies all over the

World. In X-11, the trend estimation methods of Henderson (1916), which are based on

the exploitation of Centralised Moving Average (CMA) filters, have played a significant

roll. Such CMA filters are clearly aimed at extracting smooth components defined

within  different frequency bands in the spectrum of the data (e.g., low frequency trends

and seasonal variations). Alternative filtering approaches are defined more specifically

by frequency domain considerations. For example, spectral methods that involve the

synthesis of low-pass or band-pass filters for the trend or other components have been

widely studied and used by engineers for signal processing; whilst, in the economic

literature, Sims (1974) and Melis (1989) present two examples of such an approach.
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More recently, time domain methodology has been dominated by techniques which

exploit Kalman’s seminal work on optimal filter and prediction theory using stochastic

state space  methodology (e.g., Harrison and Stevens, 1976; West and Harrison, 1989;

Jakeman and Young, 1979, 1984; Nerlove et al., 1979; Gersch and Kitagawa, 1983,

1984; Harvey, 1984, 1989; Young, 1988; Young et al., 1989, 1991; Ng and Young,

1990; Harvey and Peters, 1990; Young, 1994). In this approach, models for the various

components, including the low frequency trend, are formulated in discrete-time,

stochastic state space terms and the recursive Kalman Filter (KF) and Fixed Interval

Smoothing (FIS) algorithms (see below) are then used for estimation, signal extraction

and seasonal adjustment.

An alternative approach to signal extraction, which was stimulated by the popularity of

Box-Jenkins methods of time series analysis (Box and Jenkins, 1970), assumes that the

time series can be modelled as an ARIMA model. The various unobserved components

are then obtained from the estimated ARIMA model through a process of statistical

identification, with the classical Wiener-Kolmogorov formulae (e.g. Whittle, 1963,

1983) used to extract the components from the original time series. One procedure

which ensures the existence and uniqueness of the decomposition is the so called

‘canonical decomposition’ (Box et al., 1978; Burman, 1980; Hillmer and Tiao, 1982;

Hillmer et al., 1983;  Maravall and Gómez, 1992, 1994; Gómez and Maravall , 1996;

Maravall, 1993).

Finally, a variety of deterministic optimisation methods have been proposed for signal

extraction. These are considered from a variety of different standpoints such as:

‘regularisation’ (e.g., Jakeman and Young, 1979, 1984; Young, 1991); ‘smoothing

splines’ (e.g., Wahba, 1990);  ‘pseudosplines’ (Hastie, 1996);  ‘smoothing kernels’

(e.g., Wand and Jones, 1995); and ‘wavelet’ methods (e.g., Daubechies, 1988). In

general, the optimisation problem in these cases can be posed as one of minimising the

variance of residuals, subject to a given degree of smoothness on the signal components.

The techniques that have been suggested range from overly simplistic approaches (e.g.,

Hodrick and Prescott, 1980), which only involve trend estimation with a single, fixed

smoothing parameter; to more complex formulations involving multiple components and

numerous, optimally selected smoothing parameters (e.g., Akaike, 1980).

This present paper focuses on the major mathematical tools used by these signal

extraction methods: Fixed Interval Smoothing (e.g., Bryson and Ho, 1969; Jakeman and

Young, 1979, 1984; Norton, 1986; Young, 1988); Wiener-Kolmogorov-Whittle Optimal

Signal Extraction (OSE) theory (e.g., Kolmogorov, 1941; Wiener, 1949; Whittle, 1963,

1983; Bell, 1984); and Deterministic Regularisation (DR) in its various forms,

including smoothing splines (e.g., Wahba, 1990) and kernel smoothing (e.g., Wand and
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Jones, 1995)1. The inter-relationships between these methods are explained and the

practical advantages of the FIS approach are emphasised. In addition, the paper argues

that OSE theory provides the most appropriate analytical tool for understanding the

smoothing problem.

For simplicity and clarity of presentation, the main methodological aspects of FIS, DR

and OSE are described first within the context of a simple but important time series

problem: namely the estimation of the low frequency trend associated with a

nonstationary time series consisting of two additive components: the trend itself and an

irregular component. In particular, the time series yt  is assumed to be described by the

following univariate UC model,

 yt = Tt + et       :         t = 1,2,  ...  , N   (1)

where Tt  is a low frequency trend component; et  is a zero mean, serially uncorrelated

sequence of random variables (discrete-time ‘white noise’) with variance σe
2 , which

represents the deviations about the trend; and N is the total sample size. In general, the

various simple, second order, smoothing algorithms discussed here can be used to

estimate the trend Tt  even if et  exhibits serial correlation. In this situation, however,

they will not perform optimally in a statistical sense unless additional components are

added to account for the serial correlation, as discussed in section 6. of the paper.

2. FIXED INTERVAL SMOOTHING (FIS)

The State Space (SS) formulation of the UC model in equation (1) consists of following

state and observation equations, i.e.

Observation Equation:         yt = Htxt + et

State Equations          :          xt = Ft −1xt −1 + η t

(2)

where xt  is an n dimensional state vector; yt  is the scalar observed variable; η t  is an n

dimensional vector of zero mean, white noise inputs (system disturbances) with diagonal

covariance matrix Q; and et  is the white noise variable in equation (1), which is assumed

to be independent of η t . Ft  and Ht  are, respectively, the nxn state transition matrix and

                                                
1Kernel smoothing is not considered in detail in this paper since the CMA kernel tends to be selected in

a more ad hoc manner than in the case of the FIS, DR and OSE methods: it is normally formulated in a

non-recursive, local least squares regression form, with the cost function modulated by the kernel (e.g

Gaussian, quadratic, Epanechnikov) whose bandwidth defines the smoothness. In simple situations, it

can produce results very similar or identical to the other methods (see e.g. Young and Pedregal, 1996).
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the 1xn observation vector, which relates the state vector xt  to the scalar observation yt .

A typical example of this SS model, and one which is particularly important in the

present context, is the Integrated Random Walk (IRW) model2, where:

F =
1 1

0 1





;      H = 1 0[ ];     Q =

0 0

0 ση
2









  (3)

or, in expanded form,

yt = x1,t + et

x1,t = x1,t−1 + x2,t−1

x2,t = x2,t−1 + ηt     

where the first state variable x1,t = Tt  is the trend; the second state variable is the

differenced trend dt = Tt+1 − Tt = x1,t+1 − x1,t ; and ση
2  is the variance of the scalar (in

this case) white noise input ηt . In other words, the trend is assumed to evolve

stochastically such that its rate of change is a random walk process with the variance of

the increments specified by ση
2 .

Whatever trend model is utilised, however, the following FIS algorithm provides the

optimally smoothed estimate x̂t|N  of the state vector xt , together with an estimate of its

associated covariance matrix Pt|N
∗ = σe

2Pt|N :

1. Forward Pass Filtering Equations (Kalman, 1960)

Prediction:

x̂t|t−1 = Ft−1x̂t−1

Pt|t−1 = Ft−1Pt−1Ft−1
T + Qn

Correction: (4.1)

x̂t = x̂t|t−1 + Pt|t−1Ht
T 1 + Ht Pt|t−1Ht

T[ ]−1
yt − Ht x̂t|t−1{ }

Pt = Pt|t−1 − Pt|t−1Ht
T 1 + Ht Pt|t−1Ht

T[ ]−1
Ht Pt|t−1

2. Backward Pass Smoothing Equations (e.g., Bryson and Ho, 1969)

The FIS algorithm has a recursive form running backwards from the end of the sample

to the beginning, with the Lagrange multiplier vector LN = 0  at the start of the backward

pass:

                                                
2Harvey (1989) would refer to this as a Local Linear Trend (LLT) model with the variance of the noise

on the trend state constrained to zero. However, the IRW terminology has been in use for a considerably

longer time (see e.g. Norton, 1975; Young, 1984) and will be retained here.
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x̂t|N = Ft
−1 x̂t+1|N + QtLt[ ]

Lt = I − Pt+1Ht+1
T Ht+1[ ]T

Ft+1
T Lt+1 − Ht+1

T {yt+1 − Ht+1x̂t+1}[ ]
Pt|N = Pt + PtFt

T Pt+1|t
−1 Pt+1|N − Pt+1|t[ ] P

t+1|t
−1 Ft Pt

(4.2)

Remarks

1. The above equations are not in their most common form: they have been

manipulated  into a computationally and theoretically more convenient

normalised form, where Pt |N = Pt |N
∗ σe

2  and Qn = Q σe
2 , the latter

representing the diagonal Noise Variance Ratio (NVR) matrix. In the case of

the IRW model (3), the only non-zero element of Qn  is the scalar NVR

associated with the white noise input ηt ; i.e. Qn (2,2) = ση
2 σe

2  (see below).

The second order (i.e. n = 2 ) smoothing algorithm obtained in this manner

has been used for more than twenty years as a data pre-processing tool in the

commercial CAPTAIN and microCAPTAIN computer programs (e.g.

Young and Benner, 1991), where it is called the IRWSMOOTH filter.

2. This is not the only form of the FIS algorithm (see e.g., Young, 1984, page

96 et seq.) but it is the one originally suggested in the 1960’s (e.g., Bryson

and Ho, 1969), which we have found to be the most useful and reliable form

over many years. It must be emphasised, however, that it is not the same

form as that proposed by Anderson and Moore (1979), which is often

quoted in the statistical and econometrics literatures (e.g., Harvey, 1984,

1989) but little used in the ‘Systems’ applications. Indeed, the algorithm

(4.1)-(4.2) is closely related to the algorithm proposed recently by Koopman

(1993), as discussed by Young and Tych (1996).

3. Note that the full FIS equations constitute an off-line smoother, in the sense

that the smoothed estimate x̂t|N  of the state vector xt  is obtained only by

access to the whole data set of N samples and the algorithm cannot

completely process the data as they are received on-line. This is in contrast to

the forward pass KF part of the algorithm, which yields estimates x̂t = x̂t |t  of

the state vector xt  that can be processed on-line and in real-time, as the data

are received, if this is desired by the user. In order to differentiate these

operations, it is convenient to refer to an algorithm that has the potential for

on-line use as a ‘filter’; and one that can only be exploited off-line, as

‘smoother’ or ‘smoothing filter’. Clearly, the filter, in this sense, is often

more convenient for practical application; but the smoother will always yield

a lower variance estimate of the state at any sampling instant. In the present
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context, therefore, where we are concerned with the best estimate of the

smooth trend Tt  in equation (1), it makes sense to consider only smoothing

solutions obtained by off-line analysis of the time series yt ,  t = 1,2,  ...  ,  N .

4.  Because it is formulated in stochastic state space terms, the FIS approach is

extremely flexible and can be extended straightforwardly to handle much

more complex problems than simple trend estimation. Such extensions are

discussed later in section 6 of the paper.

3. DETERMINISTIC REGULARISATION (DR)

The non-recursive approach, known in numerical analysis as regularisation and in the

statistical literature as spline smoothing, is based on the computation of an estimate T̂t|N

which minimises a deterministic cost function of the general form (see e.g., Jakeman and

Young, 1979, 1984; Young, 1993),

J = (yt − T̂t |N )2 + λ (∇ 2T̂t |N )2{ }
t =1

N

∑ (5)

In other words, the trend component is computed so that it minimises the sum of the

squares of the difference between the trend and the series, with the constraint that it

should have a given level of smoothness, as measured by the square of the 2nd

difference of the estimated trend. This constraint is introduced by the Lagrange

Multiplier, or smoothing parameter, λ , which is selected in some manner, as defined by

the user.

The solution to the optimisation problem (5) is obtained in the standard manner as,

T̂t|N = I + λUTU[ ]−1
y = Wy (6)

where I is the NxN unity matrix; y  is the 1xN vector of data; and U  is the following

NxN matrix:

  

U =

0 0 0 0 L 0 0 0

0 0 0 0 L 0 0 0

1 −2 1 0 L 0 0 0

0 1 −2 1 L 0 0 0

M M M M O M M M

0 0 0 0 L 1 −2 1

























The NxN matrix W  has rows which define the nature of the moving average weighting

applied to the data to yield the estimate of the trend. Figure 1 shows a plot of every
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fourth row in the matrix for a data set with N=110 and λ = 90 . The weighting is

symmetric in the centre of the data but becomes asymmetric at the ends to handle the

end effects in this 2-point boundary value problem. An enlarged version of the plot at

the left hand side shows this asymmetry in more detail (note that the area under each

curve is always maintained at unity).

Remarks

1. It is clear from equation (6) that DR requires the inversion of a matrix with

the same dimension N  as the data, so that it can be very computationally

intensive and requires a large memory size for long series unless some

device for handling large matrices is introduced at the computational stage.

This is in contrast to the recursive FIS algorithm which, in the case of the

present trend estimation problem, requires no matrix inversion at all.

2. As in the case of FIS, it is straightforward to generalise the above DR

formulation. For example, the Lagrange multiplier term could be defined in

terms of the jth  difference of the trend estimate, where  j = 1,2,  ...  ,  d  (see

the comments relating to this in the next section 4.). And even more complex

generalisations can be developed straightforwardly, as discussed later in

section 6.

3. The so-called Hodrick-Prescott (HP) detrending method (Hodrick-Prescott,

1980) is a special case of this DR approach obtained when λ =1600  (see

later discussion in sections 5 and 6).

4. WIENER-KOLMOGOROV-WHITTLE OPTIMAL SIGNAL EXTRACTION

The original derivations of optimal filter theory appeared in Kolmogorov (1941) and

Wiener (1949). More recently, optimal filter and signal extraction theory for stationary

time series has been presented by Whittle (1963, 1983); and for nonstationary time

series by Bell (1984). In contrast to FIS estimation, OSE is normally formulated in the

frequency domain based on a transfer function (TF) model of the stochastic process.

For example, the TF (or ‘reduced’) form of the IRW trend model introduced in section

2. is given by,

yt = Tt + et    ;    Tt = 1

∇ 2 ηt (7)
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where ∇ = −1 L  is the difference operator and L is the lag (or ‘backward shift’)

operator, i.e. Lyt = yt−1 . The OSE estimate T̂t|N  of the trend is then given by the

expression,

T̂t|N = g(Tt )
g(Tt + et )

yt =

ση
2

(1 − L)2(1 − F)2

ση
2

(1 − L)2(1 − F)2 + σe
2

yt = NVR

NVR + (1 − L)2(1 − F)2 yt (8)

where g(Tt )  and g(Tt + et )  are, respectively, the spectral generating functions of the

‘signal’ Tt  and the ‘signal+noise’ Tt + et ; NVR = ση
2 / σe

2  is the signal-noise ratio (or

‘Noise Variance Ratio’: see previous section), and F is the lead (or ‘forward shift’)

operator, i.e. Fyt = yt+1 .

Remarks

1. The IRW smoothing filter defined by equation (3) is a low-pass filter, in

which the spectral characteristics are defined as follows by the NVR

parameter,

f T (ω) = NVR

NVR + 2 1 − cosω( ){ } 2

2. More general formulations than that given above for the IRW trend model

are clearly possible. For example, the OSE smoother for the whole family of

multiple IRW smoothing filters (i.e. IRW, Double Integrated Random Walk

(DIRW), Triple Integrated Random Walk (TIRW), etc.) is obtained simply

by replacing the 2nd power in the IRW trend definition by a general ith

power, where i = 2,3,4 ...  etc. The spectral characteristics of the OSE

smoother defined in this more general manner are given by,

f T (ω) = NVR

NVR + 2 1 − cosω( ){ } i         (9)

where i is the order of integration (see figure 3). From this formula, the ‘cut-

off’ frequency that corresponds to a given power of the spectrum is given by

(Pedregal, 1995)

ω = arccos 1 − NVR 1 − α( )
4α









1

i














     (10)
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in which α  is the specified percentage cut-off (usually 50% in signal

processing literature). Note that the special case of this filter when i = 4  (i.e.

a TIRW modelled trend) is interesting since it can be compared directly with

the well known Henderson family of CMA filters used in the X-11 seasonal

adjustment program. This is discussed further in Appendix 1.

4. Clearly, as in the case of FIS and DR, it is straightforward to develop still

more general formulations of OSE, as discussed later in section 6.

5. Finally, it must be stressed that, unlike the FIS and DR approaches, the

primary function of the above OSE analysis is to provide a theoretical basis

for smoothing, rather than a computational methodology. Although it is

possible to use the theory to develop a smoothing algorithm from the

theoretical results, this is not entirely satisfactory, since the theory applies

only to infinitely long series. Consequently, it is necessary to introduce

approximations to handle end effects (see later, section 5). Whittle (1983)

concludes that, for most applications, the state space smoothing algorithms

have greater generality and are computationally much more attractive.  

5. THE INTER-RELATIONSHIPS

Jakeman and Young (1979, 1984) demonstrated the equivalence between the FIS and

DR approaches by considering FIS within the context of Maximum Likelihood

estimation (see also Young, 1991). Bearing in mind the properties of Markov processes

and the state space system (1), the density function defining the log-likelihood is given

by

  
log p x0 ,x1,L,xN |YN( ) = log p YN |x0 ,x1,L,xN( )p x0 ,x1,L,xN( ){ } − log p YN( ) .

where Yi  stands for the information contained in the variable up to the ith  sample; while

yi  represents only the information at the ith  sampling instant. Because the term

log p YN( )  does not depend on the states, it can be dropped from the log-likelihood,

giving as a result

  

log p x0 ,x1,L,xN |YN( ) = log p YN |x0 ,x1,L,xN( )p x0 ,x1,L,xN( ){ } =

= log p YN |x0 ,x1,L,xN( )p xN |xN −1( )p xN −1|xN −2( )Kp x0( ){ } =

= log p yN |xN( )p YN −1|x0 ,x1,L,xN −1( ) p xt |xt −1( )
t =1

N

∏ p x0( )







=

= log p yt |xt( )
t =1

N

∏ p xt |xt −1( )
t =1

N

∏ p x0( )






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 Assuming Gaussian distributions and recognising that

E(yt |xt ) = Htxt ; V(yt |xt ) = E(yt − Htxt )(yt − Htxt )T = σe
2 ; E(xt |xt−1) = Ft−1xt−1

V(xt |xt−1) = E(xt − Ft−1xt−1)(xt − Ft−1xt−1)T = Q

we have that the maximisation of the log-likelihood function is the same than minimising

the following expression

J = yt − Htxt 1/σe
2

2

t=1

N

∑ + xt − Ft−1xt−1 Q−1
2

t=1

N

∑           (11)

Comparing this cost function with the DR cost function in (5), it is clear that, if

Ft  and Ht  are defined as for the IRW model in equation (3), they are identical if σe
2  is

normalised to unity and

Q−1 =
0 0

0 λ






.

This is confirmed by practical implementation, as shown in figure 2, which compares the

FIS and DR results obtained when the algorithms so defined are applied to the airline

passenger data in Box and Jenkins (1970). Here, the DR estimation is carried out with

the value of the λ =1600  used in the HP filter; while the FIS algorithm utilised the

equivalent  NVR = 1 λ = 0.000625.

It is clear from the identical nature of these results that the algorithms, although very

different in computational form, are entirely equivalent in their smoothing effect on the

time series. In particular, the CMA operation that is explicit in the non-recursive DR

algorithm is implicit in the recursive FIS algorithm. Moreover, this equivalence is quite

general: for any FIS algorithm defined by a selected SS model, it is possible to

formulate an equivalent DR cost function that will yield identical results. An example of

this is general  equivalence is revealed in the work of Akaike (1980) who uses a DR

formulation which includes a seasonal component, in addition to the trend. In this case

the cost function takes the following form, where the nomenclature is that used by

Akaike,

  

J = yt − T̂t |N − Ŝt |N( )2
t =1

N

∑ +

              d 2 ∇ iT̂t |N( )2
+ r2 ∇ sŜt |N( )2

+ z2 Ŝt |N + Ŝt −1|N +L+Ŝt −11|N( )2{ } 


Here Ŝt|N  is the estimate of the seasonal component; s is the seasonal period;

∇ = −s
sL( )1  is the seasonal difference operator; and {d, r, z } are Lagrange multipliers

which Akaike estimates within a Bayesian framework. If the term r2 ∇ sŜt |N( )2
 is
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dropped from the previous equation, the problem formulated in these terms yields a

similar result to that obtained using the ‘Basic Structural Model’ with seasonal

dummies as defined by Harvey (1984).

The equivalence between the DR approach and OSE is also easily established by

considering the latter from the standpoint of its implied CMA operation. Considering

once more the  IRW model for the trend in equation (3), the symmetric, infinite

dimensional CMA must satisfy the following equation,

  

NVR

NVR + (1 − L)2 (1 − F)2
= (L+ϕ 2L2 + ϕ1L + ϕ 0 + ϕ1F + ϕ 2F2 +L)

or, alternatively

  NVR = L2 − 4L + NVR + 6( ) − 4F + F2{ } (L+ϕ 2L2 + ϕ1L + ϕ 0 + ϕ1F + ϕ 2F2 +L)

Clearly the complete solution of this equation is not possible because of the infinite

dimension, which follows directly from the nature of OSE theory. However, an

approximate solution can be obtained by truncating the infinite polynomial to a finite

one and equating coefficients by like powers in L on both sides of this equation. This

yields the following set of linear equations

Zψ = a

where

Z =

+ −
− + −

− + −

+ −
− + −

− +



























NVR

NVR

NVR

NVR

NVR

NVR

6 8 2 0 0 0 0 0

4 7 4 1 0 0 0 0

1 4 6 4 1 0 0 0

0 0 0 0 0 6 4 1

0 0 0 0 0 4 6 4

0 0 0 0 0 1 4 6

L

L

L

M M M M M O M M M

L

L

L

(12)

ψ = (ϕ 0 ϕ1 ϕ 2 L ϕ N )T        a = (NVR 0 L 0)T

The vector of weights ψ , which are then obtained from the equation,

ψ = Z-1a           (13)

are exactly the same as those in the rows of the W matrix in the DR approach. As in the

comparison between the FIS and DR approaches, this equivalence applies for any kind

of model and any value of the NVR parameter.

Unfortunately, this equivalence between OSE and DR and, therefore, between OSE and

FIS, is only approximate, since the purely theoretical origins of the OSE smoother mean



13

that it is only applicable to infinitely long time series. Thus, while the CMA weights that

underlie both the DR and FIS approaches are automatically modified at the beginning

and end of the sample in order to allow for end-effects, as shown in figure 1, the

notional weights in OSE remain the same over the whole sample. Consequently, any

approximate implementation of the OSE smoother (which is clearly not advisable in

practice), requires the series to be extended artificially in some manner (e.g., by

forecasting and backcasting, as used in X-11 seasonal adjustment) in order to obtain

satisfactorily smoothed estimates over the whole sample. This is not only an

inconvenient and inelegant requirement, but it also means that the smoothing results will

be overly dependent upon the efficacy of the forecast/backcasting procedures used to

extend the series. Consequently, it is clearly better to regard the FIS and DR solutions

as practically implementable versions of the OSE smoother and consider OSE theory

itself as one of the fundamental theoretical bases for these solutions (the other being

Kalman filter/smoothing theory). In this sense, the inter-relationships exposed here also

reveal graphically, and in a novel manner, the well known link between the steady state

Kalman filter and the Wiener filter.

Finally, since the results obtained from all the three smoothing filters are virtually

identical, it is worth noting one, at first quite surprising, property which they all possess:

namely, as shown in Appendix 1, that all the estimated components can be expressed as

filtered versions of only one of them, showing that there is only one true source of noise

in the model. For example, in a UC model with an IRW modelled trend, the fourth

difference of the estimated trend is exactly equal to the estimated perturbations (i.e. the

detrended data), lagged by two samples and re-scaled by a factor that is exactly equal to

the NVR parameter used in the estimation.

6. MORE COMPLEX PROBLEMS AND FORMULATIONS  

For simplicity and clarity of presentation, previous sections of the paper have

concentrated on a particularly simple problem; namely the estimation of the low

frequency trend in a nonstationary time series that can be modelled by equation (1). But

all of these approaches can be applied to much more complex processes than this. To

illustrate this point, let us consider only the recursive FIS approach since, as we shall

argue in the next section 7., this has certain advantages, in both theory and practice, over

the non-recursive methods. While the DR and OSE approaches could be extended in a

similar manner to that discussed here, neither their formulation nor the implementational

aspects are as simple or attractive as FIS.
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Previous research by the authors and their colleagues on the extrapolation, interpolation

and smoothing of nonstationary time series (Young, 1988; Young et al., 1989, 1991; Ng

and Young, 1990; Pedregal and Young, 1996) have utilised models which can be

generalised to the following UC model form,

yt = Tt + Ct + St + Nt + f (ut ) + et           (14)

where, as before, Tt  is a low frequency trend and et  is a white noise term. The

additional components represent the kind of features one tends to see in nonstationary

time series: St  is an undamped but variable amplitude seasonal or periodic component,

which could itself be composed of many harmonic frequency components (e.g., in the

case of the highly periodic hourly demand for electricity, there are up to 84 harmonics);

Ct  is a damped periodic (AR or cyclical) component; Nt  is an stochastic perturbation

(AR/ARMA or coloured noise component); and f (ut )  represents the (possibly

nonlinear) effect of an ‘exogenous’ or input vector ut = [u1 u2 .... up ]T , where the

dimension p  will depend upon the number of significant exogenous variables and f (• )

is a general nonlinear function. This latter component also allows for the many kinds of

nonlinear model that are available in the statistical literature: from non-parametric

regression, through locally weighted kernel regression, to radial basis functions.

By considering equation (14) as the observation equation in a SS model and formulating

SS models for any of the components on the right hand side of the equation that require

this, it is straightforward to use the FIS algorithm for extrapolation, interpolation, and

smoothing, as well as for operations that require the extraction of estimated components,

such as seasonal adjustment. Indeed, this model can be extended much further to include

vector (multivariable) observations, although this would considerably increase the

complexity of the FIS solution, except in the simplest, highly constrained situations (see

e.g. Harvey, 1989).

A good example of a UC model, such as equation (14), is the Dynamic Harmonic

Regression (DHR: Ng and Young, 1990; Young and Tych, 1996). Its application to the

problem of signal extraction for the famous monthly time series of atmospheric CO2

concentration at Mauna Loa in Hawaii from 1970 to 1985 is illustrated in figure 6. Here,

the DHR model includes a trend and a monthly seasonal component. In addition, all the

samples for the year 1978 have been missed out intentionally to show the capabilities of

the methodology in dealing with a large number of consecutive missing samples. The

analysis shows clearly that not only is the trend increasing rapidly, but there is also a

slight increase in the amplitude of the monthly oscillations. The derivative of the trend is

often a valuable instrument for detecting possible cycles present in the data: for instance,

in this case, it is possible to see some irregular, small amplitude oscillations in the

estimated derivative as shown in figure 6. This means that, although the model seems
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satisfactory, further analysis taking into account these estimated changes could yield

marginal improvements and insights into the changing nature of the atmospheric CO2

concentration over this period.

Clearly, it is wiser to see the trend estimation problem in (1) as a special case of the UC

model (14), since the former applies only if the low frequency trend and white noise

components alone are able to fully explain the series. In all other cases, additional terms,

such as those on the right hand side of the equation, should be introduced. This more

generalised formulation of the trend estimation problem illustrates the need for great

care when a simple second order smoother, such as the HP or IRWSMOOTH

algorithm, is applied to a series where there is clear evidence of other significant

components at intermediate and high frequencies. In this situation, objective maximum

likelihood optimisation of the smoothing parameter ( NVR or λ ) will yield a trend

estimate which includes the other components and so cannot really be considered as a

‘trend’ in the usual meaning of the term. A more suitable trend estimate can be obtained

from the simple second order smoothing algorithms by selecting the NVR value on the

basis of spectral considerations, so that the algorithm acts as a sensible low-pass filter

and extracts only the low frequency components of interest. But then caution is

necessary since the end effects in this situation can be considerable and the trend

estimate can be deleteriously influenced by the perturbations of the coloured residual

(i.e. the detrended component yt − T̂t ) at either end of the series.

These latter considerations show how careful one must be in using the simple second

order FIS and DR algorithms, such as the HP and IRWSMOOTH smoothing filters,

for general smoothing applications. On the other hand, if such simple filters are used

carefully, with a judicious choice of the smoothing parameter3, then meaningful results

can be obtained, despite the dire warnings that have appeared recently in the literature

(see e.g., Cogley and Nason, 1995; as well as the comments by the present authors on

this paper, 1996). After all, these algorithms perform simply as zero lag, low pass filters

and if used carefully as such, they can perform a quick and useful operation that may

well reveal interesting aspects of the data deserving of further investigation (see e.g.,

Young, 1994). The fact that the filter preferentially amplifies certain frequency

components in relation to others is the whole point of a signal processing filter and the

output of the filter simply represents the information in the series over the defined pass-

band of the filter. There is no danger in performing such low-pass filtering operations
                                                
3 The specification of a fixed value of the smoothing parameter (e.g. the λ = 1600  proposed for the

HP filter) is clearly not justified in these general terms and is not recommended: the smoothing

parameter must be selected by reference to the time series, its spectral characteristics, its sampling

interval and the nature of the problem at hand.
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provided the nature of the filter is taken fully into account when evaluating the filtered

output.

7. THE ADVANTAGES OF FIS

Previous sections of the paper have shown how two well known methods of smoothing

and trend estimation, FIS and DR, are equivalent and can be considered to have a

common theoretical link via Wiener-Kolmogorov-Whittle-Kalman filter-smoothing

theory considered in CMA terms. But while these methods are equivalent and can, with

suitable choice of parameters, produce identical results, they are not equally useful in

practical and computational terms. Indeed, the aim of this section is to argue that the FIS

approach has significant advantages over DR (and related procedures) in terms of

flexibility, combined with computational elegance and efficiency. In this we echo and

extend the remarks of Whittle (1983, page xi).

The first advantage of FIS lies in the stochastic state space formulation, which allows for

an almost infinite variety of different model formulations, some of which have been

outlined in the previous section 6. While it is clear that DR could be extended to obtain

similar solutions, as demonstrated by Akaike’s work in this area (Akaike, 1980), it

seems much more straightforward to formulate such extensions within the convenient

stochastic SS framework and exploit recursive estimation. Indeed, this framework even

allows for the introduction of mechanistic (physically meaningful) models, since most

mechanistic models can be formulated most naturally in such SS terms. As such, the

resulting algorithms should be more attractive to scientists (and econometricians), who

tend to be sceptical about purely ‘black-box’ methods.  

The second advantage of FIS is its elegant and flexible computational nature, deriving

mainly from the inherent recursive formulation. As the first author has pointed out

(Young, 1984), most existing, non-recursive, (en bloc) methods of time series analysis

can be derived or converted into recursive form, where they inherit numerous

advantages. These include: an inherent Bayesian interpretation; automatic handling of

missing observations or gaps in the data; abrupt changes in level or slope; forecasting

and backcasting outside the data; and on-line utilisation in applications such as adaptive

signal processing, forecasting and control. The algorithms can also be extended easily to

detect and allow for outliers, including automatic ‘robustness’ modifications, which are

particularly simple in recursive processing. In contrast, when using non-recursive

approaches, such as DR or OSE, it is necessary to introduce additional and more ad hoc

statistical processing tools to handle these problems before proceeding to the estimation

of components.
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Finally, there is the question of algorithmic optimisation. All of the algorithms discussed

here involve the specification of parameters, such as the NVR values in the FIS

algorithms, the Lagrange multiplier parameters (e.g. λ ) in the DR algorithms, and the

‘bandwidth’ parameters required in the specification of smoothing kernels (see e.g.

Hart, 1991). In order to obtain optimimum smoothing performance in an objective

manner, it is necesary to optimise these ‘hyper-parameters’ in some manner. Within the

DR and smoothing kernel context, for example, the favoured approach is often some

form of cross-validation (see e.g. Bowman, 1984; Rudemo, 1982). But, once again, the

FIS approach has an inherent advantage because of its recursive formulation: within this

recursive context, it seems very natural to optimise the hyper-parameters by either

maximum likelihood based on Prediction Erroror Decomposition (Schweppe, 1965); or

some related method, such as the minimisation of the sum-of-squares of the recursive

one- or multiple-step-ahead prediction errors4.

7. CONCLUSIONS

This paper has considered the close inter-relationships that exist between three,

apparently different, statistical instruments used for signal extraction in nonstationary

time series analysis: Fixed Interval Smoothing (FIS) based on Kalman filter/smoothing

theory; Deterministic Regularisation (DR) which exploits a special form of Lagrange

multiplier-constrained numerical optimisation; and Wiener-Kolmogorov-Whittle

Optimal Signal Extraction (OSE) theory. Although passing references to the links

between these methods can be discerned from the literature, no clear statement of the fact

that they are virtually identical has appeared before.

The equivalence of the results obtained from these methods has been illustrated by

considering them all in terms of their explicit (DR and OSE) or implicit (FIS) use of

closely related Centralised Moving Average (CMA) smoothing operations involving

smoothing kernels. In particular, it is shown that the FIS and DR algorithms can be

made identical by appropriate formulation of the smoothing problem in each case; while

the similarly formulated OSE smoother involves the same basic CMA operation but

without inherent adjustment for end effects.

                                                
4Other, less obvious approaches are also possible. For example, in the case of the DHR model

discussed in section 6, we optimise the hyper-parameters by fitting the logarithm of the theoretical

DHR pseudo-spectrum to the logarithm of the AR spectrum, with the AR order defined by AIC

optimisation.
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The paper has also revealed an interesting property of the various smoothing algorithms:

namely that all the estimated components in a UC model can be obtained by filtering one

of them, showing that the UC model is only affected by a unique source of noise. A

related result shows that, given an estimated UC model for two series and a known linear

relation between the two series, then the relationships among all the other components

can be derived straightforwardly.

Finally, despite the underlying equivalence between the different approaches to signal

extraction revealed by the paper, we have argued strongly that the FIS algorithm has

many advantages, in both computational and practical terms, that make it superior to DR

and OSE. As a general approach to signal extraction, the recursive state space

formulation of FIS is an extraordinary powerful general framework into which many

problems, from diverse disciplines, can be introduced quite naturally and then solved in

an elegant and computationally efficient manner.
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APPENDIX 1 HENDERSON DETRENDING AND TIRW TREND ESTIMATION

CMA filtering techniques were developed by actuaries in the early part of the 20th

century to smooth out irregularities in data and allow for interpolation in measures such

as mortality rates. In 1916, Henderson developed certain CMA filters that have since

been used in a number of application areas, most importantly (since the 1950’s) in the

Census X-11 seasonal adjustment procedure used by numerous government agencies all

over the World. This Appendix, which derives from Young (1993) shows the close

relationship between the CMA weighting patterns that define the Henderson smoothing

filter and the implicit CMA weighting used by the FIS algorithm when the trend is

modelled as a TIRW. These results confirm the recent theoretical analysis of Wallis

(1993).

Consider the following UC model, where the series is represented as trend plus white

noise, with the trend is modelled as a TIRW process:

yt = Htxt + et

xt = Fxt −1 + η t   
      (A1.1)

where,
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and Q  is the covariance matrix of the white noise input vector η t . We will refer to the

FIS algorithm based on this model as the TIRWSMOOTH filter, since it is a higher

order relation of  the IRWSMOOTH filter mentioned in the main text.

Figure 4 compares implicit CMA weighting patterns of such TIRWSMOOTH filters

defined by various NVR values with the weighting patterns used by the Henderson 17,

13 and 5 term CMA filters. The similarities between the CMA weighting are obvious on

inspection: the only difference of note is that the Henderson CMA filter is only finite

dimensional, while the TIRWSMOOTH filter is nominally infinite dimensional. In

practice, of course, the TIRWSMOOTH filter has the advantage that it has inherent end

effect compensation, whereas the Henderson filters need to make additional allowance

for end effects: in the X-11 context, for example, this involves forecasting and

backcasting operations as a prelude to Henderson filtering over the artificially enlarged

series.
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APPENDIX 2 THE RELATIONSHIP BETWEEN THE COMPONENTS IN THE

UNOBSERVED COMPONENT MODEL ESTIMATED BY FIS

This Appendix reveals how the trend estimate obtained from the FIS algorithm (or the

similarly defined DR and OSE algorithms, since the paper shows how these are

equivalent) contains all the information on the detrended residual component; and that

the detrended component (i.e. the perturbations about the trend) can be recovered from

the trend by appropriate operations. It goes on to point out that this result can be

generalised so that, in any UC model estimated in the manner considered here, all the

estimated components can be expressed as filtered versions of only one of them,

implying that there is only one true source of noise in the model.

Consider the ith  order generalisation of equation (8) in the main text, i.e.,

T̂t|N = NVR

NVR + (1 − L)i (1 − F)i yt

If this equation is differenced j times , then

∇ = ∇
+ − −

j
t N

j

i i tT
NVR

NVR L F
yˆ

( ) ( )
/

1 1

The FIS estimate P̂(t| N)  of the perturbations about the trend can then be found either

by using the OSE smoother again or by computing the perturbation estimate directly as
ˆ ˆ

/ /P y Tt N t t N= − , i.e.,

ˆ ( ) ( )

( ) ( )
/P

L F

NVR L F
yt N

i i

i i t= − −
+ − −

1 1

1 1

Combining the two previous equations we obtain,

∇ = ∇
−

−
j

t N

j i

i t NT NVR
F

Pˆ
( )

ˆ
/ /

1
      (A2.1)

This equation shows how the jth difference of the estimated trend can be recovered from

the estimated perturbations. Similar formulae can be obtained for far more general UC

model’s, with any number of components and any definition of these components

within the FIS context (Pedregal, 1995).

Let us now consider a particular case of equation (A2.1) to highlight the importance of

the above result. When i=2 (IRW trend) and j=4 (fourth difference), we have

∇ = ∇
−

4
2

21
ˆ

( )
ˆ

/ /T NVR
F

Pt N t N

Noting that ∇ 2 (1 − F)2 = L2 , this equation can be written in the following, more
convenient form



21

∇ =4 2ˆ ˆ
/ /T NVR L Pt N t N          (A2.2)

which reveals that, for UC model’s with IRW modelled trends, the fourth difference of

the FIS estimated trend is exactly equal to the estimated perturbations, lagged by two

samples and re-scaled by a factor that is exactly equal to the NVR parameter used in the

estimation. It is important to realise that this result has been obtained analytically using

the formal expression of the OSE smoothing filter. Empirically, the result is

corroborated using the FIS algorithm for any value of the NVR and for any value of i

and j. A typical example is presented in figure 5.

Another interesting result follows from the above. Assume two series are modelled as

the following UC models:

y T P x T Py y x x= + = +          

where the time subscript is suppressed to avoid confusion. The estimates of components

are given by,
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so that the estimates of the trends can be expressed as a function of the perturbations
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Now, if the trends are related by a linear TF
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relationship between the estimated perturbations is given by
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For example, in the case of IRW trend processes, we have

ˆ ( )

( )
ˆP

B L

A L

NVR

NVR
P

NVR
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x
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showing that if two IRW trends are related by a linear TF, the perturbations around them

are also related by the same TF. The reverse is not necessarily true, however, since

integration is not unique (because it depends on initial conditions).
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Figure 1. The W matrix (left) and and enlarged version of the left hand side (right).
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Figure 2. Trend and perturbations (detrended component) of the airline passenger data
using the FIS algorithm (IRWSMOOTH; left) and DR algorithm (HP filter; right) with

the same smoothing parameter.
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Figure 3. Spectral characteristic of the RW family of smoothing filters.
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Figure 4.  Henderson filter weighting patterns for  17, 13, and 5 terms (dash-dot)
compared with the implicit weighting of the equivalent TIRW filter (solid).
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Figure 5.  Estimated perturbations of the airline passenger data around the
IRWSMOOTH trend (left plot) compared with the  fourth difference of the trend (right)

for NVR=0.000625: if the latter plot is lagged by two samples and multiplied by
theNVR parameter, then it is exactly equal to the perturbation curve in the left hand plot.
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Figure 6. DHR estimated components of the monthly atmospheric CO2
concentration time series from 1970 to 1985 (note the automatic interpolation of missing

data, see text).


